Search for the origin of wobbling motion in the $A \approx 130$ region: The case of ¹³¹Xe

S. Chakraborty ⁽¹⁾,^{1,*} S. Bhattacharyya,^{1,2,†} R. Banik,³ Soumik Bhattacharya,^{1,‡} G. Mukherjee,^{1,2} C. Bhattacharya,^{1,2} S. Biswas,^{4,§} S. Rajbanshi,⁵ Shabir Dar,^{1,2} S. Nandi,^{1,2,∥} Sajad Ali,⁶ S. Chatterjee,⁷ S. Das,⁷ S. Das Gupta,⁸ S. S. Ghugre,⁷

A. Goswami, ^{9,2,¶} A. Lemasson,⁴ Debasish Mondal,¹ S. Mukhopadhyay,^{1,2} A. Navin,⁴ H. Pai,¹⁰ Surajit Pal,¹ Deepak Pandit,^{1,2}

R. Raut,⁷ Prithwijita Ray,¹¹ M. Rejmund,⁴ and S. Samanta^{7,#}

¹Variable Energy Cyclotron Centre, Kolkata 700064, India

²Homi Bhabha National Institute, Mumbai 400094, India

³Institute of Engineering and Management, Kolkata 700091, India

⁴Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France

⁵Department of Physics, Presidency University, Kolkata 700073, India

⁶Department of Physics, Government General Degree College at Pedong, Kalimpong 734311, India

⁷UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata 700098, India

⁸Department of Physics, Victoria Institution (College), Kolkata 700009, India

⁹Saha Institute of Nuclear Physics, Kolkata 700064, India

¹⁰Extreme Light Infrastructure - Nuclear Physics (ELI-NP), IFIN-HH, Bucharest-Magurele 077126, Romania

¹¹Department of Physics, Acharya Brojendra Nath Seal College, Coochbehar 736101, India

(Received 27 February 2023; revised 22 March 2023; accepted 19 May 2023; published 27 June 2023)

In-beam γ -ray spectroscopy of ¹³¹Xe was carried out to study the structure of the intruder $\nu h_{11/2}$ band. Excited states were populated via an α -induced fusion-evaporation reaction at $E_{\alpha} = 38$ MeV. Inspection of $\gamma\gamma$ -coincidence data resulted in the identification of a new rotational sequence. Based on the systematics of excitation energy, assigned spin-parity, decay pattern, and the electromagnetic character of the interband $\Delta I = 1$ γ transitions, this sequence is proposed as the unfavored signature partner of the $\nu h_{11/2}$ band. The structure of this band is further illuminated in the light of the triaxial particle rotor model (TPRM). The possibility of wobbling excitation in N = 77 Xe-Ba-Ce isotones was explored in a systematic manner.

DOI: 10.1103/PhysRevC.107.064318

I. INTRODUCTION

Rotational motion is a typical collective mode of excitation in atomic nuclei [1]. It originates to restore the rotational symmetry broken by nuclear deformation. The wave function of an axially symmetric (prolate or oblate) nucleus is invariant with respect to a rotation by an angle of 180° about an axis perpendicular to its symmetry axis (\mathcal{R}). The quantum number associated with the \mathcal{R} operator is known as the signature (α) [2]. The even and odd spin sequences of a rotational band in even-A nuclei correspond to $\alpha = 0$, 1, respectively. Likewise, the $I = \frac{1}{2}, \frac{5}{2}, \frac{9}{2}, \dots$ and $I = \frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \dots$ sequences

[¶]Deceased.

[#]Present address: Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy. in an odd-A nucleus correspond to $\alpha = \pm 1/2$. The signaturedependent splitting in energy is known as signature splitting S(I) and can readily be extracted from the experimentally deduced level energies. The magnitude of S(I) has a distinct K dependence (K is the projection of total angular momentum on the symmetry axis) [3]. For instance, in an axially symmetric nucleus, a rotational band with a high-K (low-K) configuration is predicted to exhibit a small (large) signature splitting [4]. However, in triaxially deformed nuclei, the quantity K no longer remains conserved and hence the band structures in these nuclei have mixed configurations of wave functions with different K values. As a consequence, a rotational phenomenon like signature splitting is found to appear in a different way than expected [5]. Thus, the quantity S(I)was proposed to quantify the degree of triaxiality in atomic nuclei [6].

The rotational motion of a triaxially deformed nucleus can be realized by observing a pair of chiral doublet bands or a wobbling band or a γ band [2,7–9]. A large number of experimental signatures in favor of triaxial nuclear shapes have been found in the $A \approx 130$ region, mainly due to the presence of the unique parity shape driving $h_{11/2}$ orbital. Among these, the occurrence of wobbling bands at low angular momentum in normal-deformed γ -soft nuclei has drawn a lot of attention in the recent past. The rotational properties, such as moments

^{*}saikat.c@vecc.gov.in

[†]sarmi@vecc.gov.in

[‡]Present address: Department of Physics, Florida State University, Tallahassee, Florida 32306, USA.

[§]Present address: Neutron and Muon Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 PSI-Villigen, Switzerland.

^{II}Present address: Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.